Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AAPS J ; 20(5): 84, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-30003443

RESUMO

Although high-speed laser imaging is the current standard to characterize the plume angle of suspension-based pressurized metered dose inhalers (pMDIs), this method is limited by the inability to identify the drug content in a droplet and simulate inhalation flow. The Plume Induction Port Evaluator (PIPE) is a modified induction port for cascade impactors that allows for the calculation of the angle of a plume based on direct drug mass quantification rather than indirect droplet illumination under airflow conditions. The objective of this study was to investigate the use of the PIPE apparatus to evaluate the effect of airflow on the Mass Median Plume Angle (MMPA) of commercially available suspension-based pMDIs (Ventolin® HFA, ProAir® HFA, and Proventil® HFA). Deposition patterns within PIPE were log-normally distributed allowing for the calculation of the MMPA for the three suspension products. Mass-based plume angles were significantly smaller (narrower angle) when inhalation airflow was used compared to no flow conditions (reduction of MMPA was 8, 16, and 13% for Ventolin® HFA, ProAir® HFA, and Proventil® HFA, respectively). Additionally, new parameters for characterizing plume geometry were calculated (MMPA ex-actuator and plume orientation). Mass-based plume angles of the suspension-based pMDI formulations were highly reproducible and demonstrated the effect of inhalation flow rate. These results suggest that plume geometry tests should be evaluated under flow conditions which is not possible using current methodologies. Graphical Abstract ᅟ.


Assuntos
Albuterol/administração & dosagem , Broncodilatadores/administração & dosagem , Química Farmacêutica/métodos , Inaladores Dosimetrados , Procaterol/administração & dosagem , Administração por Inalação , Aerossóis , Química Farmacêutica/instrumentação , Desenho de Equipamento , Humanos , Tamanho da Partícula , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...